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Abstract An on-line hybrid fuzzy-neural soft-sensing

model-based control system was developed to optimize

dissolved oxygen concentration in a bench-scale anaerobic/

anoxic/oxic (A2/O) process. In order to improve the per-

formance of the control system, a self-adapted fuzzy

c-means clustering algorithm and adaptive network-based

fuzzy inference system (ANFIS) models were employed.

The proposed control system permits the on-line imple-

mentation of every operating strategy of the experimental

system. A set of experiments involving variable hydraulic

retention time (HRT), influent pH (pH), dissolved oxygen

in the aerobic reactor (DO), and mixed-liquid return ratio

(r) was carried out. Using the proposed system, the amount

of COD in the effluent stabilized at the set-point and below.

The improvement was achieved with optimum dissolved

oxygen concentration because the performance of the

treatment process was optimized using operating rules

implemented in real time. The system allows various

expert operational approaches to be deployed with the goal

of minimizing organic substances in the outlet while using

the minimum amount of energy.

Keywords Anaerobic/anoxic/oxic (A2/O) process �
Intelligent control � Soft-sensing � Adaptive network-

based fuzzy inference system (ANFIS)

Introduction

The Ministry of Environmental Protection of the People’s

Republic of China has required most existing paper mill

wastewater treatment plants to meet new, stricter conditions,

particularly with regards to the presence of organic sub-

stances in the effluent. Paper mill wastewater contains a

variety of organic and inorganic constituents, including fiber

fines, printing ink, and additives, and may therefore be high

in COD. Thus, excess organic matter in wastewater must be

removed prior to discharging effluent into particularly sen-

sitive media. These new requirements entail redesigning

former removal procedures and developing new ones to meet

the regulations. The new goals can be reached in various

ways that involve alterations of existing civil works (exten-

sions, purchases of new equipment), changes in operating

procedures (e.g., the development of new treatments) or the

use of control systems to optimize processes [1]. It is well

known that constructing control systems to optimize pro-

cesses is practical and easy to implement. For control and

automation of biological treatment processes, lack of reliable

on-line sensors to measure water quality parameters is one of

the most important problems to overcome [2]. Many

researchers have turned their attention to software sensors or

inferential models, which use other readily available on-line

measurements because these soft sensors can either replace

the hardware sensors or be used in parallel with them to
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provide redundancy and verify whether the hardware sensors

are drifting [3].

There are two types of approaches in developing software

sensors. One is a method that estimates required parameters

on the basis of a deterministic model and the other is the

black-box approach that depends only on the observed val-

ues. The most common deterministic model used for the

modeling of A2/O process is the activated sludge model

(ASM). However, the ASM has its shortcomings in pro-

cessing activated sludge, as the process is not a linear system

and has many operational parameters [4–6]. Recently, dif-

ferent procedures based on artificial intelligence (e.g., arti-

ficial neural networks and fuzzy logic) have been used to

develop software sensors [7–11]. Fuzzy neural networks

(FNN) combine fuzzy logic control (FLC) with artificial

neural networks (ANN) and realizes fuzzy logic by fuzzy

neural network, and it can use the advantages of both.

Meanwhile, the FNN can get hold of fuzzy rules and opti-

mize its subjection function on-line by a self-learning ability

of the neural network [12, 13]. Several studies have been

done to prove that the online monitoring parameters could be

applied to the prediction of effluent quality using adaptive

network-based fuzzy inference system (ANFIS). A neural

fuzzy model based on ANFIS was proposed in terms of on-

line input variables to estimate the effluent chemical oxygen

demand of a real scale unsteady anaerobic wastewater

treatment plant of a sugar factory [14]. Pai et al. [15]

designed three types of ANFIS, which adopted four on-line

parameters as input variables to predict effluent SS, COD,

and pH from a WWTP of an industrial park in Taiwan.

During the last decade, more attention has been paid to the

study and development of models to predict the effluent

quality of wastewater treatment systems using ANFIS [16–

19]. However, no study has been applied in the soft-sensing

of effluent quality from paper mill wastewater treatment

plant using ANFIS.

The present work was aimed at improving the efficiency

of dissolved oxygen control consequently to meet dis-

charge standards (GB3544-2008) for the treatment of paper

mill wastewater. By using a control system suited to the

specific operating conditions of an anaerobic/anoxic/oxic

(A2/O) process, organic substances can be removed with

substantially higher efficiency simply by adapting the

process conditions to the requirements in real time. The

study was conducted by performing a series of experiments

at a bench-scale plant. The response of the system to

changes in hydraulic retention time (HRT), influent pH

(pH), dissolved oxygen in the aerobic reactor (DO), and

mixed-liquid return ratio (r)was examined, and various

operational and control approaches were used with the goal

of maximizing COD removal while reducing energy costs.

In this work, a control system for intelligent optimal

dissolved oxygen concentration in aerobic reactor of an

A2/O treating paper mill wastewater is presented. Some

improvements have been made on the control system and

have allowed for real-time control. In order to evaluate the

efficiency and reliability of the dissolved oxygen intelligent

optimal control system, several groups of controlled

experiments were carried out.

Materials and methods

Experimental apparatus and operation

A schematic representation of the A2/O system is shown in

Fig. 1. The reactor had a working volume of approximately

240 l (40 l for anaerobic reactor, 40 l for anoxic reactor,

and 160 l for aerobic reactor), and included a settling

reactor and a regulating tank. Motor-driven mixers were

applied in the regulating tank, and anaerobic and anoxic

reactors. An air compressor and a set of diffusion aerators

were employed to supply air to the aerobic reactor. A

peristaltic pump was used to automatically furnish the

system from the regulating tank. The mixed liquor was

recycled from the aerobic reactor to the anoxic reactor.

Simultaneously, the sludge was returned from the bottom

of the settling reactor to the anaerobic reactor, and the

circulation ratio was 1. The controls of peristaltic pumps,

mixers, and air supply were automatically achieved by an

in-house-developed data acquisition and control (DAC)

system. The DAC system consisted of a computer, inter-

face cards, individual meters, transmitters, and a pro-

grammable logic controller (Siemens, Berlin, Germany).

Electrodes of pH and Dissolved Oxygen (Hach Company,

Loveland, Colorado) were installed and connected to an

individual meter. Seed sludge for starting up the A2/O was

obtained from the wastewater treatment facilities (sec-

ondary settling tank) of a paper mill in Guangzhou, China.

The raw wastewater was initially stored in a regulating tank

Fig. 1 Schematic diagram of the experimental apparatus. I Regulat-

ing tank, II anaerobic reactor, III anoxic reactor, IV aerobic reactor, V

settlingreactor. 1 Stirrer, 2 peristaltic pump, 3 influent, 4 diffuser, 5

air compressor
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and then pumped at a fixed-flow rate of 12.0, 11.0, 10.0,

9.0, and 8.0 l/h through the A2/O, resulting in an HRT of

20.0, 21.8, 24, 26.7, and 30.0 h, respectively. Similarly, a

mixed-liquid return ratio (r) of 1, 2, and 3 was controlled.

The A2/O reactor was operated at a temperature of

25 ± 3 �C, and a dissolved oxygen (DO) content of

1.0–3.0 mg/l. All chemical analyses were performed

according to Chinese Standard Methods [20].

Wastewater characteristics

Paper mill wastewater was obtained from Guangzhou

Paper Group Nansha Environmental Protection Paper Base

that uses waste paper to manufacture newspaper. The paper

mill wastewater was mainly generated from waste paper

deinking process and product manufacturing, and it had

been treated in an anaerobic digester before it entered the

experimental setup. The characteristics of the paper mill

wastewater are shown in Table 1.

Dissolved oxygen intelligent optimal control system

The control system architecture is shown in Fig. 2. The

software for the bench-scale plant control computer,

developed in MCGS (Beijing Kunluntongtai Automation

Software Technology Co., Ltd. China) which is the most

commonly used control configuration software in China,

includes graphic monitoring, data backup, PLC supervi-

sion, and control of key process parameters (HRT, DO, and

r). The dissolved oxygen intelligent optimal control system

was developed using MATLAB (R2009b) as a tool to

develop the real-time control system, although implemen-

tation is also possible using the OPC (OLE for Process

Control) communication tool. All functions and features of

the control system were developed using the built-in tools.

Due to its auto-control and further development in indus-

trial environments, a programmable logic controller (Sie-

mens S7-200) was used for data acquisition and for the

final control. The PLC collects and sends the data to the

MCGS database through RS-232, which makes the

exchange possible, and the control system is fed with

monitored on-line data (HRT, pH, DO, and r) using the

MCGS database. Using rules based on available data, the

control system continuously determines the optimum dis-

solved oxygen concentration required to achieve the

required organic matter removal efficiency. Finally, control

actions are transmitted to the process computers that

actuate on each element of the plant. In the control system,

a soft-sensing model and a fuzzy logic controller intended

to assist in dissolved oxygen intelligent optimal control. A

brief description of these is summarized below.

The soft-sensing model is used for effluent COD soft-

sensing while monitored on-line data (HRT, pH, DO, and

r) is available. In fuzzy logic controller, some rules for the

intelligent optimal control of dissolved oxygen concentra-

tion of the aerobic reactor are established.

Soft-sensing prediction model

In our previous work, online monitoring data from simple

and cheap online meters such as DO or pH meters were

used to train the ANFIS soft-sensing model for effluent

prediction. The results indicated that reasonable monitoring

A2/O process performance, just using on-line monitoring

parameters, has been achieved through the ANFIS soft-

sensing model that has potential application for control of

wastewater treatment processes [21]. Consequently, an

ANFIS was employed as a soft-sensing prediction model in

this study.

Adaptive network-based fuzzy inference system

The fuzzy inference system with two inputs (I1 and I2),

three fuzzy if–then rules, and one output was taken for

example to explain the ANFIS architecture in this study.

Considering a first-order three-rule Sugeno fuzzy inference

system [19, 22], the if–then rule base can be expressed as:

Rule 1: If I1 is A1 and I2 is B1, then f1 ¼ a1I1þb1I2 þ r1

Rule 2: If I1 is A2 and I2 is B2, then f2 ¼ a2I1þb2I2 þ r2

Rule 3: If I1 is A3 and I2 is B3, then f3 ¼ a3I1þb3I2 þ r3

where Ai and Bj (i, j = 1–3) are the MFs for the inputs I1

and I2, respectively. ai, bj and rk (i, j, k = 1–3) denote the

Table 1 Composition of feed concentrates

COD

(mg/l)

BOD

(mg/l)

pH SS

(mg/l)

TN

(mg/l)

TP

(mg/l)

NH3
? -N

(mg/l)

570–1,300 220–390 6.5–7.0 500–1,000 40–60 3–8 10–30

Fig. 2 Architecture of the control system
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consequent parameters [23]. As shown in Fig. 3, the AN-

FIS’s architecture is formed by using five layers and three

if–then rules as follows:

Layer 1: Each ‘‘i’’ node in this layer is a square node

with a node function as,

O1
1;i ¼ uAi

I1ð Þ ð1Þ

O1
2;j ¼ uBj

I2ð Þ ð2Þ

where I1 and I2 are inputs to node i, and Ai and Bj (i, j = 1,

2, 3) are the linguistic variables associated with these nodes

functions. uAi
and uBj

are the membership functions of Ai

and Bj, respectively. The fuzzy MFs of uAi
I1ð Þ and

uBj
I2ð Þcan be described in many types. Four types of

common MFs including Gaussian, generalized bell shaped,

triangular and trapezoidal shaped functions with maximum

value of 1 and minimum value of 0 described as follows:

Gaussian

u Ið Þ ¼ e
� I�cð Þ2

2r2 ð3Þ

Bell shape

u Ið Þ ¼ � 1

1þ I�c
a

� �2b
ð4Þ

Triangular shape

u Ið Þ ¼ max min
I � a

b� a
;
c� I

c� b

� �
; 0

� �
ð5Þ

Trapezoidal shape

u Ið Þ ¼ max min
I � a

b� a
; 1;

c� I

c� b

� �
; 0

� �
ð6Þ

where a, b, c, and r are the parameters set, which are

referred to as premise parameters.

Layer 2: Each circle node labeled G multiplies the

incoming signals and sends the product out, which is given

by:

O2
i ¼ wi ¼ uAi

I1ð Þ � uBi
I2ð Þ; i ¼ 1; 2; 3 ð7Þ

Layer 3: Each circle node is labeled by N, which is a

fixed node. The ith node calculates the ratio of the ith rule’s

firing strength to the sum of all rules’ firing strengths, i.e.,

the normalized firing strength.

O3
i ¼ wi ¼

wi

w1 þ w2 þ w3

; i ¼ 1; 2; 3 ð8Þ

Layer 4: Each square node in this layer is a linear node

function whose output is simply the product of the

normalized firing strength, and a first-order polynomial

(for a first-order Sugeno model) is described as,

O4
i ¼ wi � fi ¼ wi � aiI1 þ biI2 þ rið Þ; i ¼ 1; 2; 3 ð9Þ

Layer 5: The single circle node in this layer is depicted

by R and calculates the overall output as the summation of

all incoming signals, i.e.,:

O5
i ¼

X3

i¼1

wi � fi ¼
P3

i¼1 wi � fi
P3

i¼1 wi

ð10Þ

Self-adapted fuzzy c-means clustering

In order to optimize the ANFIS’s fuzzy rules automatically.

In this study, a new validity function was introduced to the

FCM clustering algorithm, B (c), which is the value of the

ratio of the compactness and the divergence. The numerator

of B (c) denotes the sum of the distances between classes, and

the denominator represents the sum of the intra-distances of

all the clusters. So the bigger B (c) is, the more reliable the

result of clustering is. The cluster number c is the best one

when B (c) reaches its maximum value, as defined by:

Fig. 3 ANFIS’s architecture

with two input variables and

three MFs
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B cð Þ ¼
Pc

i¼1

Pn
j¼1 um

ij vi � xk k2
.

c� 1ð Þ
Pc

i¼1

Pn
j¼1 um

ij xj � vi

�� ��2.
n� cð Þ

ð11Þ

x ¼ 1

n

Xc

i¼1

Xn

j¼1
um

ij xj ð12Þ

in which, ||�|| stands for Euclidean distance measure.

The FCM clustering algorithm, in which an object can

be a member of different classes at the same time, is an

unsupervised classification algorithm which uses a certain

objective function to iteratively determine the local min-

ima. The objective function minimized iteratively is a

weighted within-groups sum of distances di,j. The weight-

ing is done by multiplying the squared distances by

membership values ui,j [24, 25]:

JmðU;VÞ ¼
Xc

i¼1

Xn

j¼1

um
ij d

2
ij ð13Þ

Xc

i¼1

uij ¼ 1; 1� j� n ð14Þ

where c is the total number of clusters, n is the total number

of objects in the calibration data, dij is the distance between

an object j and a cluster i, uij is the membership function. m

is the fuzzy weighting exponent that represents the

fuzziness of the classification. Roughly estimating, a

good value for m lies in the range of 1.5–2.5. For

simplicity, we assume m = 2 in this study. dij stands for

the Euclidean distance between an object j (xj) and a cluster

i (vi), which is defined by:

dij ¼ xj � vi

�� �� ð15Þ

where xj is the observed value, vi is the cluster centroid, ||�||
stands for Euclidean distance measure. Membership values

for the individual objects are calculated using Eq. (4).

Membership uij to a certain cluster i of an instance at the

time k can be represented as:

u
kð Þ

ij ¼
1

Pc

r¼1

d
kð Þ

ij

d
kð Þ

rj

� � 2
m�1

ð16Þ

After computing the membership values for all

calibration objects, the cluster centers vi are given by

Eq. (7).

v
kþ1ð Þ

i ¼
Pn

j¼1

u
kð Þ

ij

� �m

xj

,
Pn

j¼1

u
kð Þ

ij

� �m ð17Þ

The minimization of Eq. (3) commences after giving

initial values for the cluster centers. Then Eqs. (4, 5, 6, 7)

are repeated successively in each iteration step.

Fuzzy logic controller

In general, the fuzzy logic controller consists of four

principal components: fuzzification interface, fuzzy rule

base, fuzzy inference engine, and defuzzification interface.

The fuzzification interface converts real-world data into an

acceptable form for the fuzzy controller, using fuzzy

membership as a tool. The fuzzy rule base contains a set of

‘‘if–then’’ rules relating measured variables to control

variables. The antecedent part of each rule classifies the

behavior of measured variables by fuzzy membership

functions, whereas the consequence part expresses the

essential action in terms of a set of control variables.

Available domain experts must be invited to build the rule

base in most cases. The purpose of the inference engine is

to derive a reasonable action with respect to a specific

situation based on the given rule base. It can be viewed as a

procedure by which a possibly imprecise conclusion is

deduced from a collection of imprecise premises. Finally,

the defuzzification interface converts the fuzzy control

action to the non-fuzzy action that can be accepted by the

real-world system [26].

The most important part of the fuzzy logic controller is

the knowledge base. The knowledge base of the fuzzy logic

controller comes from two sources: mathematical models

and the operator’s experience. The nonlinear mathematical

model of the fuzzy logic controller in this study can be

expressed as:

DDO tð Þ ¼ F e t þ Dtð Þ; ec t þ Dtð Þð Þ ð18Þ
e t þ Dtð Þ ¼ CODd t þ Dtð Þ � COD tð Þ ð19Þ
ec t þ Dtð Þ ¼ CODd t þ Dtð Þ � COD tð Þ½ �=Dt ð20Þ

in which, the index t in the context stands for time,

DDO(t) is the correction of dissolved oxygen,

CODd(t ? Dt) the desired effluent COD, COD(t) the pre-

dicted COD, e(t ? Dt) the COD variation, ec(t ? Dt) the

rate of COD change.

Knowledge that comes from the operator’s experience is

called heuristic knowledge. According to heuristic knowl-

edge in this study, e(t ? Dt) and ec(t ? Dt) were set at [-

40, ?40] and [-8, ?8], respectively. They were all map-

ped to [-6, ?6] by multiplying the index ke = n/xe = 6/

40 = 0.15 and kec = n/xec = 6/8 = 0.75, respectively.

The following rules are some examples of heuristic

knowledge:

Rule 1: if e = -6 and ec = -6 then DDO = 6

Rule 2: if e = -6 and ec = -4 then DDO = 6

Rule 3: if e = -6 and ec = -2 then DDO = 6

Rule 4: if e = -6 and ec = 0 then DDO = 6

Rule 5: if e = -6 and ec = 2 then DDO = 4

Rule 5: if e = -6 and ec = 4 then DDO = 2

Rule 7: if e = -6 and ec = 6 then DDO = 0
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Heuristic knowledge can provide qualitative diagnoses,

but it has minimal quantitative information. Process sim-

ulation is based on mathematical models of activated

sludge processes, so it can provide quantitative predictions.

An ANFIS model was developed for the fuzzy logic con-

troller, and the fuzzy logic controller based on ANFIS can

accurately simulate the major process dynamics of dis-

solved oxygen. The topological architecture of the fuzzy

logic controller illustrated in Fig. 4 shows a five-layer

network comprising two nodes representing the input

variables, which had Gaussian MFs in input layer, 14 nodes

in the second layer, 49 nodes in the third layer represent the

fuzzy rules, 49 nodes in the fourth layer, and one node in

the output layer.

Results and discussion

To study the efficiency of COD removal in different opera-

tional modes, two groups of experiments were carried out. In

the first group of experiments, the plant operation was

maintained in a fixed way and different operational condi-

tions were tested using an open-loop scheme. Data (Fig. 5)

obtained in this group of experiments resulted in determi-

nation of appropriate soft-sensing prediction model imple-

mented in the control system. Among the total numbers of

data, the numbers for training and testing were 60 and 30,

respectively. In the second group of experiments, different

strategies were implemented and checked using the previ-

ously developed control system, and Table 2 summarizes the

operational parameters studied in each experiment.

Determination of appropriate soft-sensing prediction

model

In order to find an optimal cluster number automatically, a

validity function, B (c), was defined, as shown in Eq. (1).

The data set used here was a four-dimension feature space.

For visualization, we showed the data in terms of two

coordinates, as shown in Fig. 6. The values of validity

function B (c) were: B (2) = 642.5, B (3) = 1,070.5,

B (4) = 1,421.5, B (5) = 1,751.5, B (6) = 1,869.8,

Fig. 5 Sample data of experiment

Fig. 4 Topological architecture of fuzzy logic controller
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B (7) = 1,895.7, B (8) = 1,922.1, B (9) = 1,996.3,

B (10) = 1,951.5, from which we could see that 9 was the

best cluster number.

The types and numbers of MFs in ANFIS included

Gaussian, generalized bell-shaped, triangular, and trapezoi-

dal-shaped functions, and the parameters were tested to

determine an appropriate ANFIS model. After many trials,

the ANFIS soft-sensing model that had Gaussian MFs for

each input variable gave the best results, so they were used

for predicting the effluent COD(CODeff) of the A2/O process.

Figure 7 shows the training and predicting results of

CODeff using ANFIS, and the relative errors of training and

testing is shown in Fig. 8. As can be seen from Figs. 7 and

8, the maximum relative error between the observed and

predicted values of CODeff was 0.7878 % when training.

When predicting, the maximum relative error value, root

mean square error, mean absolute percentage error, and

correlation coefficient value were 4.8641 %, 1.7365,

2.0402 % and 0.99033, respectively. As a result, the AN-

FIS soft-sensing model which was optimized by trial and

error during the training process was satisfactory to mon-

itor the CODeff in the A2/O process.

Control performance

Several experiments with different strategies were imple-

mented to check the previously developed control system.

The results (Table 2) demonstrated that when the desired

Table 2 Operational conditions used in every experiment

Experiment Desired

CODeff

(mg/l)

HRT

(h)

pH DO

(mg/l)

r Observed

CODeff

(mg/l)

1 20 6.5 2.2 1 74.62

2 20 6.5 2.3 3 74.98

3 20 7 2.5 2 77.27

4 20 7 2.9 2 72.34

5 20 7 2.6 3 66.74

6 21.8 6.5 3.6 2 69.76

7 21.8 7 2.6 2 76.45

8 70 21.8 7 2.8 2 74.60

9 21.8 7 2.1 3 65.74

10 24 6.5 2.4 1 78.10

11 24 6.5 2.6 2 78.46

12 24 7 2.7 1 74.44

13 24 7 2.3 2 75.64

14 24 7 1.5 3 60.86

15 26.7 6.5 2.7 1 78.77

16 26.7 7 1.7 2 72.63

17 30 7 2.4 1 77.69

Fig. 6 Visualization of pH and DO

Fig. 7 Prediction results of CODeff by ANFIS soft-sensing model

Fig. 8 Relative errors of training and testing by ANFIS soft-sensing

model
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CODeff was set to 70 mg/l, the observed CODeff was

between 60.86 and 78.77 mg/l. It indicated that the intel-

ligent control system can dynamically optimize dissolved

oxygen consequently to meet discharge standards and

steady effluent quality.

As shown in Table 2, experiments 1, 10, and 15 were

used to examine the response of the control system to an

influent of flow rate by comparing the removal efficiency

obtained with a constant pH and r. Experiment 15 using the

highest HRT set-point provided a high COD removal

efficiency of 88.75 %. In experiment 1, HRT was

decreased to 20 h; the removal efficiency was 89.34 %

next to that of experiment 1. Experiments 3 and 4, and 7

and 8 were used to examine the response of the control

system to A2/O process with a constant HRT, pH and r by

comparing the optimum DO obtained from the control

system. The DO was changed by the control system auto-

matically. The result of experiment 7 was compared with

that of experiment 8, where a control strategy that altered

the DO as a function of the concentration of COD in the

effluent was implemented. The optimum DO obtained from

the control system was almost the same, 2.6 mg/l for

experiment 7 and 2.8 mg/l for experiment 8.

Conclusions

The implementation of the dissolved oxygen intelligent

optimal control system in A2/O has resulted in the trans-

formation of a classical control system with a fixed

behavior into a system adaptable to different situation that

could appear in a WWTP to automatically optimize dis-

solved oxygen concentration. The capacity is useful for

controlling abnormal situations and maintaining the efflu-

ent within legal restrictions. Furthermore, changes in the

control strategies do not require a deep knowledge of the

physical implementation of the control system. Overall, the

COD removal efficiency of the A2/O process was sub-

stantially increased with available resources while meeting

the discharge standards and avoiding wasting energy on

aeration. Based on the results of this work, the following

conclusions can be drawn:

(a) Such very good prediction performances of ANFIS

models just adopting on-line monitoring parameters for

predicting the effluent COD are particularly important

considering the high level of complexity in A2/O process.

The ANFIS soft-sensing modeling approach may provide

an alternative generic framework for the monitoring of

wastewater treatment processes.

(b) The proposed control system architecture permits the

implementation of dissolved oxygen intelligent optimal

control system on MCGS (Monitor and Control Generated

System)—the type of system most frequently used by

control systems at full-scale treatment plants. The system

also allows for the easy implementation of different oper-

ational strategies in order to adapt the system to the actu-

ation variables involved.

(c) The intelligent control system can dynamically

optimize dissolved oxygen consequently to meet discharge

standards and steady effluent quality.
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9. Torrecilla JS, Mena ML, Yáñez-Sedeño P, Garcı́a J (2007)

Application of artificial neural network to the determination of

phenolic compounds in olive oil mill wastewater. J Food Eng

81:544–552

10. Yu RF, Chen HW, Cheng WP, Shen YC (2008) Dynamic control

of disinfection for wastewater reuse applying ORP/pH monitor-

ing and artificial neural networks. Resour Conserv Recycl

52:1015–1021

11. Aguado D, Ribes J, Montoya T, Ferrer J, Seco A (2009) A

methodology for sequencing batch reactor identification with

artificial neural networks: a case study. Comput Chem Eng

33:465–472

12. Chen JC, Chang NB (2007) Mining the fuzzy control rules of

aeration in a submerged biofilm wastewater treatment process.

Eng Appl Artif Intell 20:959–969

1400 J Ind Microbiol Biotechnol (2013) 40:1393–1401

123



13. Huang MZ, Ma YW, Wan JQ, Wang Y (2009) Simulation of a

paper mill wastewater treatment using a fuzzy neural network.

Expert Syst Appl 36:5064–5070

14. Perendeci A, Arslan S, Celebi SS, Tanyolac A (2008) Prediction

of effluent quality of an anaerobic treatment plant under unsteady

state through ANFIS modeling with on-line input variables.

Chem Eng J 145:78–85

15. Pai TY, Wang SC, Chiang CF, Su HC, Yu LF, Sung PJ, Lin CY,

Hu HC (2009) Improving neural network prediction of effluent

from biological wastewater treatment plant of industrial park

using fuzzy learning approach. Bioprocess Biosyst Eng

32:781–790

16. Perendeci A, Arslan S, Tanyolac A, Celebi SS (2007) Evaluation

of input variables in adaptive-network-based fuzzy inference

system modeling for an anaerobic wastewater treatment plant

under unsteady state. J Environ Eng Asce 133:765–771

17. Waewsak C, Nopharatana A, Chaiprasert P (2010) Neural-fuzzy

control system application for monitoring process response and

control of anaerobic hybrid reactor in wastewater treatment and

biogas production. J Environ Sci 22:1883–1890

18. Mullai P, Arulselvi S, Ngo HH, Sabarathinam PL (2011)

Experiments and ANFIS modelling for the biodegradation of

penicillin-G wastewater using anaerobic hybrid reactor. Biore-

sour Technol 102(9):5492–5497

19. Pai TY, Yang PY, Wang SC, Lo MH, Chiang CF, Kuo JL, Chu

HH, Su HC, Yu LF, Hu HC, Chang YH (2011) Predicting effluent

from the wastewater treatment plant of industrial park based on

fuzzy network and influent quality. Appl Math Model

35(8):3674–3684

20. China Environment Protection Bureau (2002) Standard Methods

for the Examination of Water and Wastewater, 4th ed. China

Environmental Science Press, Beijing

21. Hu K, Wan JQ, Ma YW, Wang Y, Huang MZ (2012) A fuzzy

neural network model for monitoring A2/O process using on-line

monitoring parameters. J Environ Sci Health Part A 47:744–754

22. Huang MZ, Wan JQ, Ma YW, Wang Y, Li WJ, Sun XF (2009)

Control rules of aeration in a submerged biofilm wastewater

treatment process using fuzzy neural networks. Expert Syst Appl

36:10428–10437

23. Huang MZ, Wan JQ, Ma YW, Li WJ, Sun XF, Wang Y (2010) A

fast predicting neural fuzzy model for on-line estimation of

nutrient dynamics in an anoxic/oxic process. Bioresour Technol

101:1642–1651

24. Yoo CK, Vanrolleghem PA, Lee IB (2003) Nonlinear modeling

and adaptive monitoring with fuzzy and multivariate statistical

methods in biological wastewater treatment plants. J Biotechnol

105:135–163

25. Ayvaz MT (2007) Simultaneous determination of aquifer

parameters and zone structures with fuzzy c-means clustering and

meta-heuristic harmony search algorithm. Adv Water Resour

30:2326–2338

26. Chen WC, Chang NB, Chen JC (2003) Rough set-based hybrid

fuzzy-neural controller design for industrial wastewater treat-

ment. Water Res 37:95–107

J Ind Microbiol Biotechnol (2013) 40:1393–1401 1401

123


	Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process
	Abstract
	Introduction
	Materials and methods
	Experimental apparatus and operation
	Wastewater characteristics
	Dissolved oxygen intelligent optimal control system
	Soft-sensing prediction model
	Adaptive network-based fuzzy inference system
	Self-adapted fuzzy c-means clustering

	Fuzzy logic controller

	Results and discussion
	Determination of appropriate soft-sensing prediction model
	Control performance

	Conclusions
	Acknowledgments
	References


